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ABSTRACT

The general structure of a viscoplastic theory is developed from physical
and thermodynamical considerations. The flow equation is of classical form.
The dynamic recovery approach is shown to be superior to the hardening
function approach for incorporating nonlinear strain hardening into the
material response through the evolutionary equation for back stress. A novel
approach for introducing isotropic strain hardening into the theory is
presented, which results in a useful simplification. In particular, the
limiting stress for the kinematic saturation of state (not the drag stress) is
the chosen scalar-valued state variable. The resulting simplification is that
there is no coupling between the two state variables in the flow equation, and
there is no coupling between dynamic and thermal recovery terms in each
evolutionary equation. The derived theory of viscoplasticity has the
structure of a two-surface plasticity theory when the response is plasticlike,
and the structure of a Bailey-Orowan creep theory when the response is
creeplike. .

[. INTRODUCTION

The development of power systems with greater thermodynamic efficiency
makes the need for accurate analytical representations of inelastic
deformation a necessity. These mathematical models must be capable of
accurately predicting short-term plastic strain, long-term creep strain, and

the interactions between them. Multiaxial, cyclic, and nonisothermal



conditions are the norm, not the exception. This formidable task has received
considerable attention over the past three decades, resulting in an emerging
field of continuum mechanics called viscoplasticity.

The theoretical development of viscoplasticity has its origin with the
works of STOWELL {19571, PRAGER [19611, and PERZYNA [1963]1, whose theories did
not contain evolving internal state variables. The field blossomed in the
1970's when rapid advances in computing technology enabled accurate solutions
to be obtained readily. Internal state variable theories began to appear in
the models of GEARY & ONAT (19741, BODNER & PARTOM [1975]1, HART [1976], MILLER
(19761, PONTER & LECKIE (19761, CHABOCHE [1977], KRIEG et al. [19781, and
ROBINSON [1978]. Theoretical refinements have continued to occur throughout
the 1980's in the models of STOUFFER & BODNER [1979], VALANIS [1980]1, WALKER
[19811, SCHMIDT & MILLER [1981], CHABOCHE & ROUSSELIER [1983], ESTRIN & MECKING
(19841, KREMPL et al. [1986]1, LOWE & MILLER [19861, and ANAND & BROWN [1987].
Reviews on various aspects of viscoplasticity have been written by PERZYNA
(19661, WALKER [1981], CHAN et al. [1984], LEMAITRE & CHABOCHE [19851, and
SWEARENGEN & HOLBROOK [1985]. Although this listing is by no means complete,
it is representative of the work that has been done in viscoplasticity and of
the attention that it has received.

The purpose of this paper is to systematically develop the thermodynam-
ically admissible structure of a unique theory of viscoplasticity (given in
eqn (20)). This theory is unique in how it accounts for isotropic hardening;
otherwise, it is consistent with the current state of the art. Its development
was most strongly influenced by the viscoplastic theories of PONTER & LECKIE
(19761 and CHABOCHE [19771. Ponter and Leckie's theory is based on a Bailey-

Orowan theory of creep (BAILEY [1926]1 and OROWAN [1947]1), whereas Chaboche's



theory is based on a two-surface theory of plasticity (DAFALIAS & POPOV [1975]
and KRIEG [1975]). Others have also formulated viscoplastic theories based on
those of Ponter and Leckie (e.q., ROBINSON (19781) and Chaboche (e.g., WALKER
[19811).

The concept of internal state variables, as it applies to polycrystalline
metals, and the thermodynamic constraints placed on the theoretical formulation
are discussed in the next section. 1In Section III, an Q-form theory of
viscoplasticity is derived for kinematic hardening materials. Two approaches
to introduce nonlinear strain hardening into the theory are compared in
Section IV. The dynamic recovery approach is preferred over the hardening
function approach for realistic modeling of material behavior. A novel
approach for incorporating isotropic hardening into the theory is presented in
Section V, wherein the limit stress for the kinematic saturation of state is
considered to be the independent state variable.

IT. INTERNAL STATE

This paper addresses isothermal material behavior of viscoplastic
materials, such as polycrystalline metals. Each material element is considered
to be isotropic and to carry no stress in its initial virgin condition. But
while each material element deforms homogeneously, it may Tose some or all of
its material symmetries. Small strains, displacements, and rotations are
considered to compose the deformation of each material element. The
formulation of this section is based on the works of Onat and his colleaques
(e.g., GEARY & ONAT [1974]1, ONAT [19861, and ONAT & LECKIE [19881).

The changing internal structure of a material element is characterized by
the pair (0,5), where o is the state of stress and S is the state of a

~

finite number of internal state variables: that is, S = {sy,s2,...,50}. The



stress accounts for the elastic (or reversible) changes in internal structure,
while the internal state variables account for the inelastic (or irreversible)
changes in internal structure. These inelastic changes influence the future
response of the material element.

The behavior observed in two similar experiments for the class of
materials of interest is given in Table 1. The stress history of experiment 2
differs from that of experiment 1 by a constant rotation Q of the respective
internal forces, where the superscript T denotes its transpose. Here € is
the state of strain, Sg represents the virgin state of the internal state
variables, and t s time. The operator Pqg is defined by
PQS = {Pgs1.Pgs2.-.-.Pqsn} where Pq are linear tensor transformations
appropriate to the rank of tensor on which they operate. The condition of an
isotropic virgin state Sg = PgSp 1is satisfied in these experiments.

This paper considers materials whose mechanical behavior accepts the

general constitutive representation

trig) = —F=-tr(g) (1a)
R R ATEY (1b)
§ = G(a,$) (1¢)
such that
FQ.59) = 0 Aad
G(0,S4) = 0 (1e)

where a dot over a variable denotes its time rate of change. The quantity

t @
i}

1.5 - 0.5tr(e)I is a deviatoric strain, and the quantity

[ Y]
1]

1.5 - 0.5tr(o)T 1is a deviatoric stress, where I is the unit tensor.
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Both are normalized for uniaxial deformation. Given a Cartesian coordinate

system, tr(X) = Xj3 where X represents any second rank tensor and where

repeated indices are summed over. Equation (la) defines the volume strain,
where E and v are the isotropic elastic constanté. According to eqn (1b),
the deviatoric strain rate é is the sum of a deviatoric elastic strain rate
ée = (1 + v>§/E and an inelastic strain rate ép = F(0,S) that depends on
the present internal state. The inelastic strain EP is deviatoric by
definition, implying plastic incompressibility in agreement with eqn (la).

The internal state variables evolve according to eqn (1c), where

S ={s1.50,.--.5n} and G = {g).92,.--.9n}. The absence of a o term in

eqn (1¢) implies that sudden changes in the level of stress leaves the internal
structure S unchanged. Such constant structure experiments provide useful
information about the stress dependence of ép = Q(S'§)~ The initial
conditions of eqns (1d) and (le) are in agreement with the constraints of
Table 1.

As a consequence of thermodynamics, there exists a differentiable real-

valued function ¢(o,S) such that for all deformations of interest

g g2 (2)

where ¢ 2 0 with the equality holding only in the stress-free virgin state
(Q,§0) (cf. ONAT & LECKIE [1988]1). This equation states that the rate of work
done on a material element must equal or exceed the rate of increase in the
free energy ¢ of the material element under isothermal conditions. Given a
Cartesian coordinate system, g : & = °ijéji’

The free energy function obtained from eqns (1) and (2) has the form

gD g+ &) (3)

~
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where $ > 0 with the equality holding only in the virgin state (g,§o). The

elastic compliance D 1is positive definite, and in a reference configuration

DiJk ik J] + 51183k) (v/E)S]JSK] where E > 0 and

-1 ¢ v <0.5 for an elastically isotropic material.

| = (Y + v)/2EI(S,

The thermodynamic constraint of material dissipativity is determined from

eqns (1)-(3) to be

3¢
NS (42)
or equivalently
d 9
30 (-C g) * 35 G<O (4b)
where
n n
9 ;L
35 G = E 35 } ™95 (4c)

1

The elastic modulus C = Q—] exists because D is positive definite. The
thermodynamic force w; conjugate to the thermodynamic displacement (or
internal state variable) sj 1is defined by wj = 3¢/3sj. Equation (4a) states
that the rate of inelastic work done on a material element must equal or exceed
the rate of increase in the free energy of the material element at constant
stress due to a changing internal structure. Equation (4b) establishes the
fact that the free energy ¢ is a Lyapunov function. Since -C : F

quantifies the rate of stress relaxation when é = 9, this equation implies
that ¢ cannot increase during stress relaxation. Furthermore, the evolution
of state is stable in the sense of Lyapunov during stress relaxation.

GEARY & ONAT [1974] determined that the set of internal state variables

S = {s1,52,...,5p} must be composed of irreducible even-rank tensors. Given



that S 1is composed of no tensors of rank greater than two (as is the case in
this paper), then it must be composed of (a) scalars, a; (b) isotropic tensors,
a = al; (¢) antisymmetric tensors, a« = ~oT; and (d) symmetric and traceless (or

~ ~ ~

deviatoric) tensors, a = %T, tr(g) = 0. Their symmetries distinguish them.
Actually, scalars and isotropic second-rank tensors possess the same symmetry
and are therefore equivalent. Each antisymmetric tensor is associated with an
axial vector; whereas each symmetric and traceless tensor remains unchanged
under 180° rotations about its principal directions (cf. BACKUS [19701). Since
the initial state is isotropic (Table 1), all internal state variables other
than scalars must vanish at t = 0.

The theory developed in this paper considers two internal state variables.
They are S = (E,C), where E is a deviatoric tensor of second rank and ¢ s
a scalar, such that in the virgin state E(O) = 9 and ¢(0) = {go > 0: that
is, Sog = (Q,Co). The deviatoric tensor accounts for kinematic hardening

effects, whereas the scalar accounts for isotropic hardening effects.

The thermodynamic constraint of material dissipativity, eqn (4), therefore

becomes
: 9 . ¢, 3 ;
g Exgr 8+ 508 (5a)
or
g:eP>B:E+ UL (5b)

where B = 3¢/3f is the back stress and L = 3¢/37 is the limit stress.
These are the thermodynamic forces conjugate to the internal state variables
§ and {. The sum B : é + Lé defines the rate of change in the free energy

at constant stress due to a changing internal structure for this viscoplastic

theory. In the literature, the back stress B is also referred to as the

~



internal stress, the equilibrium stress, the rest stress, or the kinematic
stress. The limit stress L is not, however, equivalent in concept to the
drag stress (also referred to as the friction stress or the threshold stress)
as used in the literature. This point is discussed in Section V.

The dissipative portion of the free energy, $(§) in egn (3), is

considered to have the following form:

HE @ € + % h<§2 i, cé) (6)

Here H > 0, h > 0, and ¢ > CO such that the equality holds only in the

b =

~N|—

virgin state SO; thus, ¢ > O as required. The linear relationships B = HE
and L = hf result from eqns (5) and (6), where the hardening parameters H
and h act like elastic moduli. It follows that the back stress B is devia-

toric. In the virgin state §0,

B(0) = 0 and L(O) = Ly = hco > 0.
ITI. Q-FORM THEORY

The foundation of an Q-form theory of viscoplasticity is the normality
structure of a potential function Q. The advantage of this approach is that
the choice of two scalar-valued functions of state (i.e., ¢ and Q)
completely defines an elegant mathematical structure for viscoplasticity. The
disadvantage is that the theory may be too restrictive. This approach results
in a theory where inelastic strain rate strongly influences the evolution of
state, as is the case in creep of metals. The ensuing discussion does not
address physical justification for the existence of the Q function; rather,
it concentrates on the mathematical consequences of such a function.

The theoretical development of RICE [1971] in modeling the local response

of crystallographic slip and the experimental results of BROWN [1970] and

ROBINSON [1976] on polycrystalline metals both support the relationship

F-gP-2s (7)



Implementing the concepts of Rice's crystallographic theory and considering
Bailey-Orowan relationships for the evolution of internal state, PONTER &

LECKIE [1976] determined that

:::]zoo-

(8)

[eF ob]
2

Only the kinematic variable E shall be considered at this time. Here it is
assumed that the potential function Q(S,B) > 0, that the equality is satisfied
only in the stress-free virgin state (0,0), and that the set of all possible
surfaces {Q = constant} is composed of elements that are convex, that are
nested, and that contain the origin (0,0) in state space (§,B). Together,

eqns (7) and (8) define a theory of viscoplasticity.

The thermodynamic constraint of material dissipativity, eqn (5), becomes

3

N .
§"’a§

o :B>0 (9
for the Q-form theory, and is automatically satisfied because of the properties
assigned to the potential function Q. Comparing eqns (5) and (9) makes it
apparent that this Q-form theory is but a subset of the set of all thermodynam-
ically admissible theories of viscoplasticity that admit & as their only

internal state variable.

The sbecific form of the potential function to be considered is
Q- e[g<22> N mBZ)] a0

where © > 0 is a diffusivity parameter (e.g., an Arrhenius function of
temperature) and M(I) > 0 and N(Bp) > O are differentiable material

functions such that the equalities hold only when their arguments are zero.

The notation X = ‘/(2/3) X : X defines the square root of the second

invariant of X normalized for uniaxial deformation, where X represents any

~

deviatoric second-rank tensor. The deviatoric tensor defined by £ =S - B is

~
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the effective stress that governs inelastic deformation, sometimes called the
overstress. The introduction of third invariants into this theory would bring
about higher order effects, which are neglected in accordance with von MISES
(1913]1. The first invariants are zero because both § and E are deviatoric.
The flow and evolutionary equations that result from eqns (7), (8), and

(10) are

1a)

and
B

) g

= £ = ¢P - oR(B (11b)

2

t

2
where Z(ZZ) = ég/e = 1.5(8M/822) > 0 is the ZENER & HOLLOMON [1944] parameter

and B(BZ) = 1.5(3N/3B.)> > 0 is the thermal recovery function, such that the

2
equalities hold only when their arguments are zero. The flow equation,

eqn (11a), is compatible with the kinematic constructs of PRAGER [1949] and
ZIEGLER [1959] in the classical theory of plasticity. Likewise, the
evolutionary equation, eqn (11b), is compatible with the Bailey-Orowan
hypothesis for creep (BAILEY [1926] and OROWAN [19471); that is, the internal
structure evolves as the result of a competitive process between strain
hardening due to inelastic deformation and thermal recovery progressing with
time. MWhenever the thermal recovery term is neglected, the theory becomes one
of rate-dependent or dynamic plasticity. The presence of the thermal recovery
term gives the theory its viscous characteristics.

Equation (11) satisfies the thermodynamic constraint of material

dissipativity, eqn (9), since

[ag]

(p]
1o
~~
w
N

|
-+

>0 (12)

o]

nNo
T~
~~
1
S

is unconditionally satisfied.
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Choosing the functional dependence of Z(Is) to be Ip/K (where the drag
stress K> 0 1is a material constant governing strength) results in a theory
of viscoplasticity without an explicit yield surface. On the other hand,
choosing Z(Ip) to depend on ZZ/Ky - 1 (where the threshold stress Ky > 0
is a material constant denoting a yield strength, such that Z = 0 whenever
Iy < Ky) results in a theory of viscoplasticity that has an explicit yield
surface. Since the function Z(I3) has vanishingly small values over a finite
range in its argument for all known viscoplastic models, these models all
possess the property of an implicit yield surface in the predicted response.
This implicit yield strength (which is the observed yield in the predicted
response) is typically an order in magnitude larger than the explicit yield
strength defined by Ky (which is not observable in the predicted response) in
those models that incorporate Ky.

IV. NONLINEAR HARDENING

The Q-form theory of viscoplasticity developed in the previous section
produces linear-strain-hardening viscoplastic responses whenever thermal
recovery OR is negligible compared with strain hardening ég. This disagrees
with the experimental observation that the rate of strain hardening in metals
typically diminishes with increasing deformation to an asymptotic rate in
tensile tests at lTow homologous temperatures. That is, metals exhibit an
evanescent strain-memory effect caused by a strain-induced recovery mechanism
called dynamic recovery. As in the previous section, only the kinematic state
variable § will be considered. Furthermore, this section will address only
those deformations where thermal recovery can be neglected.

Two methodologies are commonly used to introduce nonlinear strain

hardening into viscoplastic models. The first methodology introduces the

evanescent strain-memory effect by adding a dynamic recovery term into the



evolutionary equation for back stress, as advocated by CHABOCHE [19771. The
second methodology incorporates this effect by letting the hardening parameter
H in the evolutionary equation for back stress become a hardening function
ﬂ(g), as advocated by PONTER & LECKIE [1976]. Both of these methodologies
amend the Q-form theory of the previous section, in that they both produce
viscoplastic responses with nonlinear strain-hardening characteristics.

Thermodynamically admissible viscoplastic theories that contain these two
amendments are constructed in such a way that they are identical in form for
monotonic and proportional toading conditions. This is done to provide a basis
for comparison. These theories predict vastly different responses, however,
whenever there is either a reversal or a nonproportionality in the loading
direction. The objective of this section is to assess which of these two
methodologies for incorporating nonlinear strain hardening into the theory best
represents known experimental observations. This is accomplished by presenting
the two approaches and then comparing them.

Dynamic Recovery Methodology

The dynamic recovery approach incorporates the evanescent strain-memory
effect by introducing a dynamic recovery term into the evolutionary equation
for back stress. In particular, the constitutive equations for this

viscoplastic theory (with no thermal recovery) are hypothesized to be
L
) R (13a)

and

(13b)

where H > 0 is the hardening parameter and L > 0 is the limit stress (which

is considered to be a material constant in this section).

12



Note that the flow equation, eqn (13a), is identical to the flow equation
of the Q-form theory, egn (11a). This implies that a flow potential for
inelastic strain rate exists for this viscoplastic theory. (See eqn (7).)
However, unlike the Q-form theory, the evolutionary equation in this
viscoplastic theory, eqn (13b), cannot be derived from a flow potential for the
given flow equation. The Q-form theory enables the evolution of back stress to
be derived from the flow potential by assuming that the internal structure
evolves in a Bailey-Orowan manner (cf. PONTER & LECKIE [19761). Clearly, this
is not the case in eqn (13b). This does not imply that the theory of
viscoplasticity given in eqn (13) is thermodynamically inadmissible. On the

contrary, the thermodynamic constraint of material dissipativity, eqn (5),

L, (B
2. (ﬁ) 50 (14)

and it is unconditionally satisfied.

becomes

Steady state occurs whenever the internal state variables attain steady
values. Under this condition for eqn (13b), L = Bp; that is, the limit stress
L is the 1limiting value of back stress at the kinematic saturation of state.

A graphic illustration of the dynamic recovery concept is given in Fig. 1.
The 11mitihg state of back stress defines a hypersurface of radius L in state
space. MWhenever this upper bound is reached, a perfectly plasticlike response
is attained. Furthermore, the inelastic strain rate ép becomes coaxial with
both the stress § and the back stress B, and the nested set of flow surfaces
{Ly = constant} becomes stationary until unloading occurs. Otherwise this set
of flow surfaces can translate freely within the bounding surface, as governed

by the flow and evolutionary equations.

13-



Hardening Function Methodology
The hardening function approach incorporates the evanescent strain-memory
effect by making the hardening parameter H a hardening function ﬂ(E), while
retaining the structure of the Q-form theory. This is accomplished by
considering a Legendre transformation of the dissipative free energy $(§)

defined in eqn (3), causing a change in variables; that ‘is,
n
oD = $(S) - E ".s: (15)
i=1

and therefore s; = -3¢/3wj in accordance with eqn (4c). Here
n= {m,m,...,my} 1is the set of thermodynamic forces conjugate to the set of
internal state variables S = {s7,52,...,5n}-

The particular form of ¢ to be considered is

(p=—J JE@dt:dE e
0

giving rise to the desired relationship g = glﬂ(g), where § is finite and
ﬁ(g) > 0 s the scalar-valued hardening function. Note that ﬁ(g) must be
independent of stress o in order for the elastic response to be independent
of internal state, as established in eqn (1).

The resulting viscoplastic theory is the Q-form theory of egn (11) with
H replaced by ﬂ(E). This generalized Q-form theory is thermodynamically
admissible since the constraint of material dissipativity, eqn (12), is
unchanged and remains unconditionally satisfied. Here, as in the development
of the Q-form theory of Section III, only the Kinematic variable B8 is

~

addressed.
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A Comparison
To facilitate a comparison between these two methodologies, it is useful

to consider the special hardening function

B,
Ho=H-Hid an

where H and L are the same material constants found in egn (13). Thus, the

evolutionary equation for back stress is given by

B
5 _opgaP ooy = P
B =HE" - H ¢ (18a)
for the dynamic recovery approach and by
B
JTL L (18b)

for the hardening function approach. There is a subtle but significant
difference in the last term of these two equations, which is the focus of our
attention for the rest of this section. Notice that the hardening function in
eqn (17) was chosen in such a way that the dynamic recovery approach and the
hardening function approach are nearly equivalent. In fact, they are identical
under monotonic and proportional loading conditions. Thermal recovery is being
neglected in this section, so as to simplify the discussion.

The hardening function approach is known to produce too strong of a
Bauschinger effect. To overcome this fault, ROBINSON [1978] assigns
inequalities to the hardening function ﬁ(g) so that it becomes discontinuous
when crossing specified boundaries in state space. To illustrate this point,
it is useful to consider the case of uniaxial loading. Here eqgn (18a) reduces

to

B = HeP - H %—’épl (19a)

157



for the dynamic recovery approach, and eqn (18b) reduces to

B = HeP — H l%l &P (19b)

for the hardening function approach, where B = B and &P = ¢P . These

11
equations are equivalent in the loading domain of region I of Fig. 2; however,
they differ in the unloading domain of region II. In region II, the terms on
the right-hand side of eqn (19a) become additive; whereas the terms in

eqn (19b) continue to compete against each other. For this reason, the back
stress evolves much faster in region II for the dynamic recovery approach,

eqn (19a), than it does for the hardening function approach, egn (19b), as
illustrated in Fig. 2. The slower evolution of the back stress is the cause
of the excessive Bauschinger effect exhibited by the hardening function

methodology. Equations (19a) and (19b) could be made identical by considering
H(B) = H - H(Bp/L)sgn(B:I) instead of eqn (17), where sgn() is the signum

~

function. This is analogous to assigning an inequality to the hardening
function, as advocated by ROBINSON [1978]. But this particular hardening
function is not admissible, since H must be independent of stress (recall
that E = E - §). Thus, the dynamic recovery approach is preferred over the
hardening function approach with regards to its ability to account for the
Bauschinger effect.

For nonproportional loading conditions, the dynamic recovery approach,
eqn (18a), predicts that the inelastic strain rate ép becomes coaxial with
both the stress § and the back stress § at the kinematic saturation of
state By =L (Fig. 1). On the contrary, no specified coaxiality can be

ascertained under nonproportional loading conditions at the kinematic

saturation of state for the hardening function approach eqn (18b). The two-

16



surface theory of plasticity (DAFALIAS & POPOV [1975] and KRIEG [19751) is
based on the experimental observation that a limit surface exists with
normality-governed inelastic strain rate (cf. PHILLIPS [1986]1). Contained
within this 1imit surface is the actual yield surface, which kinematically
translates. The dynamic recovery methodology is consistent with this
experimental observation; the hardening function methodology is not. In fact,
the dynamic recovery approach is an extension of the two-surface theory from
plasticity to viscoplasticity (cf. CHABOCHE & ROUSSELIER [19831). Thus, the
dynamic recovery approach is again preferred over the hardening function
approach. This time, the preference is with regards to its ability to account
for nonproportional behavior at the kinematic saturation of state in the
relative absence of thermal recovery.

It is important to point out that if thermal recovery (i.e., -GHB(BZ)E/BZ)
was considered in eqn (18), then these two methodologies would be equivalent
with regards to their ability to account for thermally activated creep behavior
under nonproportional loading conditions.

For the reasons just discussed, the dynamic recovery methodology is
preferred over the hardening function methodology.

V. ISOTROPIC HARDENING

The current philosophy for incorporating isotropic hardening into an
otherwise kinematic theory of viscoplasticity is to normalize the effective
stress L =S - B with a scalar-valued state variable K called the drag
stress (cf. WALKER [19811), such that g(ZZ/K) = ég/e. Upon inversion, this
relationship becomes I, = K;“(e‘z’/e), which finds I, proportional to K. A
similar result is obtained when a yield surface is introduced, such that
;(ZZ/K -1 = égle where Ky is a scalar-valued state variable called the

y
threshold stress. This is not a particularly desirable situation since there



are an infinite number of pairs (£,K) (or (g,Ky)) that satisfy this equation
for any given value of ég/e (cf. KREMPL et al. [19861). MWhich is the correct
pair depends on the history and, therefore, on the evolution of internal state.
But proper characterization of the evolution of internal state, particularly
its thermal recovery aspects, is a difficult task because Iy is proportional
to K.

The following is a novel approach for incorporating isotropic hardening

into an otherwise kinematic theory of viscoplasticity, such that Z(r,) = ePre.

2
That is, there is no coupling of the kinematic and isotropic state variables in

the Zener-Hollomon parameter Z. Instead, the coupling is introduced in the

evolutionary equation for back stress B. In particular, it is hypothesized

~

that the constitutive equations for this theory of viscoplasticity are

z
P - 62(L,) 7 (20a)
2
B B
Tek =P b (20b)
and
Fel=11:eP-erw (200)

given that © >0, H >0, h > 0, (L) = eg/e >0, and r(L) > 0, such that in

2
the stress-free virgin state B(0) = 0, L(0) = 0, Z(0) = 0, and r(0) = 0. 1In
this theory, the back stress B and the limit stress L are the internal
variables. The theory in eqn (20) is a generalization to the theory in
eqn (13), in that the 1imit stress now evolves.

The flow equation, eqn (20a), is the same flow equation derived in the

Q-form theory, eqn (11a). Therefore, a flow potential for inelastic strain

rate (eqn (7)) exists for this viscoplastic theory.

18



The evolutionary equation for back stress, eqn (20b), is the same as
egn (13b), except that the 1imit stress is no longer a material constant. At
first glance, there appears to be no thermal recovery of the back stress, but
this is false conjecture. Thermal recovery has the physical effect of
shrinking the limit surface in Fig. 1. This can be modeled in one of two ways.
First, the Timit stress can diminish because of thermal recovery. Or, second,
a separate thermal recovery term can be included in the evolutionary equation
for back stress. Both methods lead to thermal recovery in the ‘E direction.
Both effectively shrink the 1limit surface in Fig. 1. By allowing L to
thermally recover (as in eqn (20)) the thermal recovery of E . becomes
implicit. This results in a desirable simplification in the structure of this

viscoplastic theory since there is no coupling between dynamic and thermal

recovery terms in each evolutionary equation.

The evolutionary equation for limit stress, eqn (20c), is of the Bailey-
Orowan form, where work hardening competes against thermal recovery. In
concept, the limit stress L differs from the drag stress K (or the threshold
stress Ky) of conventional viscoplastic theories. Both are strength
parameters. But L 1is more like an ultimate strength; whereas K 1is more
like a yield strength. In particular, L 1is a measure of B at the kinematic
saturation of state, where gp, S, and B are all coaxial (Fig. 1). The work
hardening term in eqn (20c) [ : gp/L > 0 is equivalent to what would be
derived from an Q-form theory (based on that in Section III) that incorporates
both a back stress and a drag stress.

The viscoplastic theory of eqn (20) is thermodynamically admissible since
the constraint of material dissipativity, eqn (5), becomes

2

82 2r(L)
T *33agy 20 21)
=72




and it is unconditionally satisfied. If one were to choose ég, instead of

L: gp/L, as the measure for isotropic hardening (which is typically done in

viscoplastic theories (cf. WALKER [19811)) one would obtain E,/L + (BZ/L)2

2

+ 20r(L) - g(zz)]/3g<z ) > 0 as the condition for material dissipativity. But

2
this inequality is only satisfied conditionally, and therefore the choice of
ég is undesirable.

Thermal recovery, as provided in eqn (20), is capable of driving both the
back stress and the 1imit stress to zero, which defines the virgin state. In a
neighborhood of the virgin state, L must evolve faster than By if there is
to be an evanescent strain-memory effect. This is certainly satisfied through
the choice of L : gp/L for the hardening rate of L. This choice also
implies that thermal recovery of infinite strength is required to keep an
initially virgin material in a virgin state during deformation. Such a
condition results in a viscoelasticlike fluid response, and probably only
exists in the molten state for metals. Thus, in all Tikelihood,
polycrystalline metals are probably not in a virgin state at any initial
condition of practical interest (i.e., Lp > 0) as understood within this
theoretical framework.

VI. CONCLUDING REMARKS

The structure of a viscoplastic theory has been derived from both physical
and thermodynamical considerations. The development began by considering an
Q-form theory, from which the flow equation and an evolutionary equation for
back stress were derived. The structure of this evolutionary equation was
altered to introduce an evanescent strain-memory effect through the addition

of a dynamic recovery term. This approach was deemed superior to that of

introducing a nonlinear hardening function. A unique hypothesis was then
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considered for isotropic hardening (i.e., the limit stress (not the drag
stress) is considered to be the scalar-valued state variable). This led to a
desirable simplification in the structure of the theory. That is, there is no
coupling between the kinematic and isotropic state variables in the flow
equation, and there is no coupling between dynamic and thermal terms in each
evolutionary equation. The final result is a theory of viscoplasticity with
adequate capabilities for modeling polycrystatline metals. This theory has
the structure of a two-surface theory of plasticity when the response is
plasticlike, and the structure of a Bailey-Orowan theory of creep when the
response is creeplike.

Before the theory can be used to model a material or a class of materials,
specific forms for the material functions need to be determined. The intent of
this paper, however, has been to focus on the underlying structure of a
viscoplastic theory. The development and use of specific viscoplastic models
that are compatible with this theory are left for future research.
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TABLE 1. - STRESS-STRAIN CONSTRAINTS FOR MATERIALS THAT ARE INITIALLY
STRESS FREE AND ISOTROPIC
Experiment Input Output Structure
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FIGURE 1, - SCHEMATIC REPRESENTATION OF THE DYNAMIC
RECOVERY OF BACK STRESS.

FIGURE 2. - SCHEMATIC COMPARISON OF THE DYNAMIC RECOVERY
APPROACH DR OF EQN (19a) AND THE HARDENING FUNCTION
APPROACH HF OF EQN (19B) FOR TENSILE LOADING AND UN-
LOADING WHERE 0 = 0qq = Sq4. B = Byqy. AND E = £44.
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